3.584 \(\int \cot (c+d x) (a+b \sin ^n(c+d x))^p \, dx\)

Optimal. Leaf size=55 \[ -\frac {\left (a+b \sin ^n(c+d x)\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac {b \sin ^n(c+d x)}{a}+1\right )}{a d n (p+1)} \]

[Out]

-hypergeom([1, 1+p],[2+p],1+b*sin(d*x+c)^n/a)*(a+b*sin(d*x+c)^n)^(1+p)/a/d/n/(1+p)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 55, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3230, 266, 65} \[ -\frac {\left (a+b \sin ^n(c+d x)\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac {b \sin ^n(c+d x)}{a}+1\right )}{a d n (p+1)} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*(a + b*Sin[c + d*x]^n)^p,x]

[Out]

-((Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*Sin[c + d*x]^n)/a]*(a + b*Sin[c + d*x]^n)^(1 + p))/(a*d*n*(1 + p)
))

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3230

Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sin[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*(a + b*(c*ff*x)^n)^p)/(1 - ff^2*x^2)^(
(m + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && ILtQ[(m - 1)/2, 0]

Rubi steps

\begin {align*} \int \cot (c+d x) \left (a+b \sin ^n(c+d x)\right )^p \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (a+b x^n\right )^p}{x} \, dx,x,\sin (c+d x)\right )}{d}\\ &=\frac {\operatorname {Subst}\left (\int \frac {(a+b x)^p}{x} \, dx,x,\sin ^n(c+d x)\right )}{d n}\\ &=-\frac {\, _2F_1\left (1,1+p;2+p;1+\frac {b \sin ^n(c+d x)}{a}\right ) \left (a+b \sin ^n(c+d x)\right )^{1+p}}{a d n (1+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 55, normalized size = 1.00 \[ -\frac {\left (a+b \sin ^n(c+d x)\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac {b \sin ^n(c+d x)}{a}+1\right )}{a d n (p+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*(a + b*Sin[c + d*x]^n)^p,x]

[Out]

-((Hypergeometric2F1[1, 1 + p, 2 + p, 1 + (b*Sin[c + d*x]^n)/a]*(a + b*Sin[c + d*x]^n)^(1 + p))/(a*d*n*(1 + p)
))

________________________________________________________________________________________

fricas [F]  time = 0.46, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (b \sin \left (d x + c\right )^{n} + a\right )}^{p} \cot \left (d x + c\right ), x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*sin(d*x+c)^n)^p,x, algorithm="fricas")

[Out]

integral((b*sin(d*x + c)^n + a)^p*cot(d*x + c), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sin \left (d x + c\right )^{n} + a\right )}^{p} \cot \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*sin(d*x+c)^n)^p,x, algorithm="giac")

[Out]

integrate((b*sin(d*x + c)^n + a)^p*cot(d*x + c), x)

________________________________________________________________________________________

maple [F]  time = 0.96, size = 0, normalized size = 0.00 \[ \int \cot \left (d x +c \right ) \left (a +b \left (\sin ^{n}\left (d x +c \right )\right )\right )^{p}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)*(a+b*sin(d*x+c)^n)^p,x)

[Out]

int(cot(d*x+c)*(a+b*sin(d*x+c)^n)^p,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \sin \left (d x + c\right )^{n} + a\right )}^{p} \cot \left (d x + c\right )\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*sin(d*x+c)^n)^p,x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c)^n + a)^p*cot(d*x + c), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \mathrm {cot}\left (c+d\,x\right )\,{\left (a+b\,{\sin \left (c+d\,x\right )}^n\right )}^p \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)*(a + b*sin(c + d*x)^n)^p,x)

[Out]

int(cot(c + d*x)*(a + b*sin(c + d*x)^n)^p, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a + b \sin ^{n}{\left (c + d x \right )}\right )^{p} \cot {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)*(a+b*sin(d*x+c)**n)**p,x)

[Out]

Integral((a + b*sin(c + d*x)**n)**p*cot(c + d*x), x)

________________________________________________________________________________________